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■ Abstract Polymers offer a wide spectrum of possibilities for materials applica-
tions, in part because of the chemical complexity and variability of the constituent
molecules, and in part because they can be blended together with other organic as well
as inorganic components. The majority of applications of polymeric materials is based
on their excellent mechanical properties, which arise from the long-chain nature of the
constituents. Microscopically, this means that polymeric materials are able to respond
to external forces in a broad frequency range, i.e., with a broad range of relaxation
processes. Computer simulation methods are ideally suited to help to understand these
processes and the structural properties that lead to them and to further our ability to
predict materials properties and behavior. However, the broad range of timescales and
underlying structure prohibits any one single simulation method from capturing all of
these processes.

This manuscript provides an overview of some of the more popular computational
models and methods used today in the field of molecular and mesoscale simulation of
polymeric materials, ranging from molecular models and methods that treat electronic
degrees of freedom to mesoscopic field theoretic methods.

INTRODUCTION

Polymers are complex macromolecules that display structure ranging from theÅ
level of the individual backbone bond of a single chain to the scale of the radius
of gyration, which can reach tens of nanometers. Polymeric structures in melts,
blends and solutions can range from nanometer scales to microns, millimeters
and larger. The corresponding time scales of the dynamic processes relevant for
different materials properties span an even wider range, from femtoseconds to
milliseconds or even seconds or hours in glassy materials or for large scale order-
ing processes such as phase separation in blends. No single model or simulation
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algorithm can span this range of length and time scales. Therefore, molecular and
mesoscopic models for polymeric materials range from those including quantum
effects and electronic degrees of freedom; to chemically realistic, classical mod-
els; to coarse-grained, particle-based mesoscale models that retain only the most
essential elements of the polymer system to be simulated; to field-theoretic models
that describe the polymer system in terms of density or composition variables. One
of the most important problems in computational materials research, which holds
particular challenges for polymer materials, is multiscale simulation—the bridg-
ing of length and time scales and the linking of computational methods to predict
macroscopic properties and behavior from fundamental molecular processes.

Herein we provide an overview of computational models and methods used in
the field of molecular and mesoscale simulation of polymeric materials, highlighted
by their recent application to important polymer problems. Due to the breadth of
the field, this cannot be a comprehensive review. Instead, we focus on a few of the
more popular models and methods used in molecular and mesoscale simulation of
polymers and, where appropriate, refer the reader to several excellent articles that
expand on this topic.

This review is structured as follows. First we present an overview of several dif-
ferent models used to describe polymer systems on particular length and time scales
and indicate their typical area of application. We then introduce the computational
methods used to simulate these different models. These sections are necessarily
cursory and are meant to provide a starting point from which the reader can proceed
to the cited literature for more detailed information. We conclude with a discus-
sion of a few selected applications to demonstrate the use of the different levels
of modeling and simulation in more detail. The selection of these applications is
admittedly influenced by our own research interests, but we endeavor to give a bal-
anced account of what we feel are prominent and important recent developments in
the different application areas of molecular and mesoscale simulation of polymeric
materials. In the choice of cited literature we again cannot be comprehensive but
strive to be balanced and refer the reader to recent review work where we have
to be short in our presentation and also to the relevant recent publications that re-
flect the state of the art in the application of the discussed models and algorithms.
The application of computer simulation techniques to polymers has also been the
subject of several books over the past ten years (1–4), and a comparative reading
of these will provide the interested reader with a more complete perspective on
this multifaceted field.

MOLECULAR AND MESOSCALE MODELS FOR POLYMERS

Models with Electronic Degrees of Freedom

At the most basic level of model building, all nuclear and electronic degrees
of freedom must be treated quantum mechanically. We therefore consider a
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Hamilton-operator

Ĥ (x) =
∑
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2mj

)
+
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+ V({R̂ j }, {r̂ k}) 1.

where{R̂ j } and{r̂ k} denote the position operators for the sets of nuclear and elec-
tronic degrees of freedom, respectively. The potentialV contains all Coulombic
interactions. All practical work for condensed phase simulations (5) involves a
separation of nuclear and electronic degrees of freedom, e.g., through an adia-
batic approximation underlying a Car-Parrinello-type ab initio molecular dyna-
mics (MD) calculation, or through the Born-Oppenheimer approximation leading
to a purely electronic Hamiltonian in which the nuclear positions enter only as
parameters and not as dynamic degrees of freedom:∑

k

(
−h21k

2me

)
+ Vne({R j }, {r̂ k})+ Vee({r̂ k}). 2.

HereVneandVeedenote the nucleus-electron and electron-electron interactions,
respectively. The consideration of the electronic degrees of freedom is, of course,
indispensable for the treatment of optical or electrical properties of polymers (6),
but we are not concerned with this area in the following discussion. At the next level
of approximation, only nuclear degrees of freedom and their mutual interactions
are treated according to classical mechanics.

Chemically Realistic Models of Polymers

Classical atomistic MD and Monte Carlo simulations are based on forcefields
parametrizing the energy surface of a given spatial arrangement of the nuclei
making up a polymer chain (7). One distinguishes between bonded interactions
[bond-length (stretch) potentials, bond-angle (bend) potentials, torsion (twist) po-
tentials and cross-terms] and non-bonded interactions, which in general include
Coulomb interactions and dispersion forces, the latter typically parametrized as a
Lennard-Jones 12-6 interaction. A typical explicit-atom force field can be written
as
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∑
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. 3.

Here theRi denote the positions of the nuclei,Ri j the distance between nucleii
andj, and theqi their partial charges. The last two sums constitute the non-bonded
interactions. In the Lennard-Jones term, the parametersσi j and εi j denote the
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position and depth, respectively, of the attractive minimum, which depend on the
types of the interacting atoms. The first three sums are the bond-length, bond-angle
and torsion-angle contributions to the potential energy. The force constants and
equilibrium values of bond lengths and bond angles depend on the types of the
atoms defining the bond (2-body interaction), bond-angles (3-body interaction)
and torsion angles (4-body interaction). The bond-angle term sometimes is not
written as a function of the angle but of the cosine of the angle for computational
convenience (for small oscillations around the minimum value, both forms are
equivalent). Also for computational expedience, the bond-length term, which gives
rise to small-amplitude, high-frequency motions, is sometimes replaced by a bond-
length constraint, because in a MD simulation, the integration time step must be
chosen smaller than the inverse of the largest frequency present in the system. When
the above forcefield contains all atom positions, it is called an explicit- or all-atom
model. When one is primarily interested in dynamics on picosecond and larger
time scales (for instance in polymer melt simulations), it is desirable to neglect the
hydrogen atoms in the parametrization of the force-field so that the high-frequency
motion of these light atoms can be avoided, and the number of force centers can
be significantly reduced. To do this, the hydrogen atoms and the atoms they are
attached to are combined to form a so-called united atom, located at or near the
position of the atom the hydrogen atoms are attached to and having the combined
mass. This procedure constructs a so-called united atom force field. Of course, this
can only be a valid description of the polymeric system when there are no partial
charges of these groups present and also when hydrogen-bonding effects can be
neglected.

Coarse-Grained Molecular and Mesoscopic Models

For many polymeric properties it is not necessary (and in general not computation-
ally feasible) to explicitly take into account all chemical detail. Polymers show a
large degree of universality in their static (8) as well as dynamic (9) behavior, and
these universal scaling properties as a function of chain length, density, composi-
tion, and temperature can be most efficiently studied via coarse-grained molecular
models (4). Examples of off-lattice (continuum) models include “pearl-necklace”
type models, either of the tangent hard-sphere type (10, 11), where the bond lengths
between neighboring pearls along the chain can vary freely within tight limits
bmin ≤ b ≤ bmax, or of the bead-spring type (12–15), where neighboring beads are
connected by anharmonic springs. More complicated models consisting of ellip-
soidal repeat units (16) are also employed. Within the coarse-grained models, one
envisions each repeat unit to represent a segment of a realistic chain. Experience
from mapping realistic models onto coarse-grained models (17) suggests about
four to five carbon-carbon backbone bonds of a typical polymer are represented
by a single coarse-grained bond. For this reason, stiffness effects of real polymers
are typically not introduced into these coarse-grained models through torsion po-
tentials but rather through bending potentials. Thus one considers a Hamiltonian
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of the form

H =
∑

i

Ub(bi )+
∑

j

Uθ (θ j )+
∑

kl

Unb(|r k − r l |), 4.

wherei runs over all bonds,j runs over all bond angles, andk, l run over all non-
bonded force center pairs in the system. The non-bonded interaction can be either
purely hard-core repulsive, soft-core repulsive, or repulsive with an attractive part,
such as the Lennard-Jones potential given in the last term of Equation 3.

Such models have been used to study the glass transition (18–22), ordering in
block copolymers, phase separation in blends, rubbers, crosslinked polymer net-
works (23–25), and more. A more computationally demanding type of interaction,
such as the long-range Coulomb interaction, is used to model polyelectrolytes
(26–28).

Coarse-grained molecular models may also be defined on a lattice. As described
below, lattice models may be simulated more efficiently than off-lattice models,
allowing the description of phenomena computationally inaccessible to off-lattice
simulation methods. Lattice models may describe the polymer as a self-avoiding
random walk on some simple lattice, for instance a simple cubic lattice (29) or
diamond lattice (30, 31), or be of a type intermediate between these somewhat
inflexible lattice models and the continuum case, such as the bond-fluctuation
model (32–35). In all these models there is a certain class of allowed bond vec-
tors conforming to the lattice symmetry (6 for the simple cubic lattice, 12 for the
diamond lattice, and 108 for the bond-fluctuation model in d= 3), and this set of
bond vectors defines the set of possible bond lengths and bond angles that can be
used as dynamic intramolecular degrees of freedom. The non-bonded interactions
in the lattice models are generally realized as contact interactions between neigh-
boring monomers such as, e.g., next neighbors on the simple cubic lattice (36–39),
but may also be approximated by discretized Lennard-Jones interactions in the
longer-range case (40, 41). Recent work by Panagiotopoulos and Kumar explores
the relationship between lattice and off-lattice models for simple systems in order
to determine the level of discretization that must be used to achieve off-lattice
equilibrium results with a lattice model (42, 43).

Mesoscopic Particle-Based Models of Polymers

In many instances, it is computationally impractical to model polymer systems
with a molecular description, even if molecular-level details are represented by
coarse-grained expressions, as in bead-spring models of polymers. In such cases,
mesoscale simulation methods are used, often with models specific to that partic-
ular method. One example is that of dissipative particle dynamics (DPD), a meso-
scale simulation technique developed to model Newtonian and non-Newtonian
fluids (44–64). In a DPD simulation, described in more detail below, the fluid is
modeled as a collection of point particles that represent lumps of fluid contain-
ing many molecules. The DPD interaction is considered mesoscopic because the



5 Jun 2002 11:48 AR AR162-16.tex AR162-16.SGM LaTeX2e(2002/01/18)P1: GJB

406 GLOTZER ¥ PAUL

internal degrees of freedom of the fluid elements are ignored and only their center-
of-mass motion is resolved. DPD particles are defined by a massMi, positionr i, and
momentumpi, and interact with each other via a pairwise, two-body, short-ranged
forceFDPD that is written as the sum of a conservative forceFC, dissipative force
FD, and random forceFR:

FDPD
i j = FC

i j + F D
i j + F R

i j . 5.

Specific expressions for each force are used and are best discussed in the context
of the method; thus we defer further discussion to the methods section below. We
note here that extending this model to polymers involves adding a conservative
harmonic spring force between adjacent particles in a polymer chain,

Fp
i j = K (ri j − req)ei j , 6.

whereK is the spring constant, andreq is the equilibrium spring length. The dis-
sipative particles now become soft beads connected by springs, with each bead
representing many atoms.

Mesoscopic Field Theoretic Models of Polymers

Here we briefly describe several field-theoretic models of polymers, each used
in a specific mesoscale simulation method to be described in more detail in a
subsequent section.

At the simplest mesoscopic level, a polymer system may be modeled by a phe-
nomenological expression for the free energy. For example, the Flory-Huggins or
Landau free energies of mixing may be used to model aspects of polymer mixtures
(7). In such models, the details of the system are incorporated into, e.g., the Flory
χ parameter and the monomer segment mobilities. The time-dependent Ginzburg-
Landau or Cahn-Hilliard methods and closely related cell dynamical system meth-
ods [see (65) for a review of these methods applied to polymers] utilize these forms
to predict the time evolution of mesoscopic structures in multicomponent and/or
multiphase polymeric systems such as blends and block copolymers.

Such phenomenological expressions are equivalent to truncated expansions
of a more complicated free energy. In the density functional theories used by
Fraaije and coworkers (66–70) and by Doi and coworkers (71–73), the full polymer
path integral contained in the free energy is retained in a self-consistent mean-
field approach in which Gaussian mean-field statistics are assumed. These more
detailed but still mean-field models are used in so-called dynamical mean-field
density functional theory (DDFT) methods by combining them with coarse-grained
time-dependent Ginzburg-Landau (TDGL)-type models for the time evolution of
conserved order parameters (66–73).

Most field theoretic treatments of polymers are based upon the Gaussian thread
model, where polymers are represented by thread-like, continuous space curves
(74). In this model, conformations of non-interacting polymers are given a Gaus-
sian statistical weight with a harmonic stretching energy. Interactions between
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monomers on the same or different polymers are typically modeled by pseudopo-
tentials that are often assumed quadratic in the local monomer density. By applying
a Hubbard-Stratonovich transformation, the quadratic density interactions can be
decoupled, leading to a representation in which different chains are coupled to
fluctuating potential fields. Using this approach, field-theoretical models can be
easily derived for a variety of multicomponent complex fluids, including polymer
solutions, blends, and block copolymers. These models can be then used in several
ways (described below) to predict mesoscopic structure in these complex mate-
rials. Normally, the integrals contained in these models are approximated within
a self-consistent mean-field approach and thus do not contain fluctuations that
may be important for many processes. The new field theoretic polymer simula-
tion (FTPS) method recently pioneered by Fredrickson and coworkers (74, 75),
and discussed below, allows for the exact solution of these models in order to
predict mesoscale structures in polymeric systems beyond what is achieved with
mean-field approaches.

Flow and Continuum Mechanics Models of Polymers

For the description of flow of polymeric materials on a processing scale, one
must employ a hydrodynamic description and incorporate phenomena occurring
on mesoscopic to macroscopic length and time scales. For example, to capture
the non-Newtonian properties of polymer flow behavior (76, 77) one can either
use special models for the materials stress tensor or obtain it from a molecular
simulation using the instantaneous flow properties of the hydrodynamic fields as
input. This combined modeling approach has been taken in the CONNFFESSIT
project (78, 79). In the area of high-performance materials and devices, polymer
composites are finding a widespread application, and the modeling of these mate-
rials was until recently done primarily through finite element techniques (80) and
are beyond the realm of application of molecular modeling approaches we discuss
here. Here commercial finite element packages are typically used, including older
software tools such as ABAQUS (www.hks.com) and ANSYS (www.ansys.com),
and newer tools such as Palmyra (http://matsim.ch/PalmyraE.html) and OOF
(www.ctcms.nist.gov/oof). In the simulation of nanocomposites, in which inor-
ganic materials of nanoscopic dimension are dispersed in a polymeric matrix,
efforts to combine models that describe phenomena from molecular through macro-
scopic levels are underway (81, 82); such efforts in so-called multiscale modeling
are described below.

SIMULATION METHODS FOR POLYMERS

Quantum Mechanical Methods

A variety of methods have been developed for the incorporation of quantum ef-
fects on the electronic level or the nuclear level, or both. With the advent of the
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Car-Parrinello method (83), the class of so-called ab initio methods has undergone
an explosive development (5). In this method the nuclei perform thermal motion at
some fixed temperature (energy scale), and the electronic degrees of freedom are
adiabatically decoupled at a much lower temperature, which keeps the electronic
wave function close to a desired state, most often (but not necessarily) the ground
state. The forces on the nuclei by the electronic degrees of freedom are determined
by the electronic charge density, and the nuclei are propagated using classical MD
techniques. Conversely, the nuclei exert forces on the electronic wave functions,
which serve as the quantum mechanical degrees of freedom for the electrons.

A complete separation of time scales underlies the Born-Oppenheimer approx-
imation, which leads to a Hamilton operator for the electronic degrees of freedom
only. The most common techniques (84) for solving this electronic problem are
perturbative techniques such as the Moeller-Plesset perturbation theory, which is
an improvement on the self-consistent Hartree approximation or density functional
type techniques (85). The Born-Oppenheimer approach is also the basis most often
used for the parameterization of force fields for classical MD or MC simulations.

Another type of quantum method is more concerned with the effect of quantum
fluctuations on the nuclear coordinates and is based on the path integral approach
to the quantum mechanical partition function (86). In this case, the potential energy
part of the Hamilton operator can be either given by a fixed force field or determined
through a quantum mechanical treatment of the electronic coordinates [ab initio
path integral methods (5)]. The path integral can be solved either by MD or MC
methods (87, 88).

Classical Molecular Dynamics

MD simulation (89, 90) is a technique for computing equilibrium and transport
properties of a classical many-body system, in which the nuclear motion of the
molecules can be treated classically, an approximation that is reasonable for many
important problems in polymer materials. In MD, molecules move under the ac-
tion of conservative forces that are additive and symmetric, and derived from
intermolecular potentials that are provided as input to the simulation. The rate
of change of momentumpi of particle i is equal to the sum of the forces acting
on it:

ṗi = Fi (t) =
∑
j 6=i

FC
i j , 7.

whereF i (t) is the force acting on particlei at timet, andFC
i j is the conservative

force acting on particlei due to particlej. The time rate of change of the position
r i of particlei is given by

ṙ i = pi

mi
. 8.

There are several approaches to discretizing and numerically integrating the
equations of motion. The most popular is the velocity Verlet method, in which the
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position and velocity,vi, of every particle at timet + dt are obtained from

r i (t + dt) = r i (t)+ vi (t) dt + Fi (t)

2mi
(dt)2

vi (t + dt) = vi (t)+ Fi (t + dt)+ Fi (t)

2mi
dt. 9.

In its simplest form, the MD method samples states in the microcanonical
(NVE) ensemble. Simulations at constant temperature (NVT) and/or pressure
(NPT), rather than constant energy, are easily performed by adding an appro-
priate thermostat and/or barostat (89, 90). It is also straightforward to simulate the
non-equilibrium effects of an imposed shear or strain on the system (91, 92).

In an MD simulation, the level of detail the simulation can describe is dictated
by the form of the force field, or, equivalently, the interaction potential, which can
range from a fully atomistic form to more coarse-grained potentials, as described
above. In the former case, the time steps employed in solving the discretized
equations of motion for the particles are on the time scale of femtoseconds; in the
latter case, the time step may be tens of femtoseconds (in the case of the bead-
spring model), or as large as nanoseconds (in the soft force field used in DPD). A
useful metric in defining the size of an MD simulation is the number of particle
steps performed (i.e.,X particles simulated forY time steps is a simulation ofX∗Y
particle steps). This metric is more useful than simply the number of particles or
the length of the simulation because one must usually trade one to get more of the
other. Thus, e.g., there are examples of simulations of a billion atoms simulated
for hundreds of time steps, and simulations of a hundred atoms for billions of time
steps. One of the largest MD simulations to date is 1015 atom steps, achieved for
a protein in explicit solvent with long-range interactions (93). For most polymer
simulations today, a typical system size may range from 1011–1013 particle steps
depending on the level of detail (e.g., number of terms, range of forces) included in
the force field. For systems where more than one type of interaction is considered
(e.g., bonded and non-bonded forces), multiple-time-stepping algorithms such as
rRespa (94) have been invented that allow one to accelerate the dynamics by
separating and staggering the updates of the different types of forces.

Brownian Dynamics

Brownian dynamics (BD) is a modification of molecular dynamics that is parti-
cularly useful when there is a large separation of time scales governing the motion
of different components of the system, such as for a polymer in a solvent. There
the short time steps required to resolve the fast motion of the solvent molecules
means that the evolution of the slower modes of the system, for which a larger
time step would have sufficed, will require very long MD runs. However, if the
detailed motion of the solvent molecules is not of interest, they may be removed
from the simulation and their effects on the polymer represented by dissipative
(−γp) and random (σξ (t)) force terms, replacing Newton’s equations of motion



5 Jun 2002 11:48 AR AR162-16.tex AR162-16.SGM LaTeX2e(2002/01/18)P1: GJB

410 GLOTZER ¥ PAUL

by a Langevin equation,

ṗi = Fi (t) =
∑
j 6=i

FC
i j − γpi + σζi (t), 10.

whereγ andσ are constants and depend on the system, andζ (t) is a Gaussian
random noise term. One consequence of this approximation of the fast degrees
of freedom by fluctuating forces is that the energy and momentum are no longer
conserved, which implies that the macroscopic behavior of the system will not be
hydrodynamic. Additionally, the effect of one solute molecule on another through
the flow of solvent molecules is neglected, as is any modification of the interaction
between them due to solvent structure. Although there are ways of including these
interactions (95), if they are important their explicit simulation by MD should be
considered. Brownian dynamics methods for polymer flow problems have been
developed by several groups (96–99);Öttinger’s book contains further discussion
of stochastic polymer simulation methods (100).

Dissipative Particle Dynamics

Dissipative particle dynamics (DPD) is a computational method that allows the
simulation of Newtonian and non-Newtonian fluids, including polymer melts and
blends, on mesoscopic length and time scales (44–64). Like MD and BD, DPD is
a so-called particle-based method, but in a DPD simulation, the elementary unit
is not an atom or molecule but a point particle that is meant to represent a fluid
element containing many molecules. DPD is in some sense a progression of MD
and BD. In this simulation technique, two particlesi and j interact via pairwise
additive, symmetric 2-body forces that can be written as a sum of conservative,
dissipative, and random forces:

FDPD
i j = FC

i j + FD
i j + FR

i j . 11.

The total forceF i (t) acting on particlei at timet is

ṗi = Fi (t) =
∑
j 6=i

FC
i j +

∑
j 6=i

FD
i j +

∑
j 6=i

FR
i j . 12.

Because the forces are pairwise, momentum is conserved, and thus the macro-
scopic behavior directly incorporates Navier-Stokes hydrodynamics, instead of
having to model its effects through an approximate hydrodynamic tensor as is
done in mesoscopic field-theoretic approaches. However, energy is not conserved
because of the presence of the dissipative and random force terms. These force
terms are similar to those contained in BD, but incorporate the effects of Brownian
motion on larger length scales. Moreover, DPD has advantages over BD because
the solvent is simulated explicitly in a DPD simulation.

DPD has several advantages over MD. First, because the particles are meso-
copic, hydrodynamic behavior is observed with far fewer particles than required
in an MD simulation. Second, the form of the forces used in DPD allow larger



5 Jun 2002 11:48 AR AR162-16.tex AR162-16.SGM LaTeX2e(2002/01/18)P1: GJB

POLYMER SIMULATION 411

time steps to be taken than in MD. The three-force expressions used to determine
the interaction between pairs of particles can be written as (62–64):

Conservative force: FC
i j = 50ωc(ri j )êi j

Dissipative force: FD
i j = −γωD(ri j )(êi j · pi j )êi j

Random force: FR
i j = σζi j ωR(ri j )êi j . 13.

Herer i j = r i − r j , ri j = |r i j |, êi j = r i j /|ri j |, pi j = pi − p j ,50 is a constant
related to the fluid compressibility,γ is a friction coefficient,σ is a noise amplitude,
andζi j is a random noise term with zero mean (〈ζi j 〉 = 0) and unit variance. The
values ofζi j are uncorrelated for different pairs of particles and for different
times such that〈ζi j (t) ζkl(t ′)〉 = (δikδ j l + δi l δ jk) δ(t − t ′). Note that momentum
conservation requiresζi j = ζ j i .

The form of the interaction potential between particles is governed by the form
of the weight functionsωC, ωD, andωR (62). Whereas in MD the interaction
potentials are high-order polynomials of the distanceri j between two particles,
in DPD the potentials are softened so as to approximate the effective potential
at mesoscopic length scales. The form of the conservative force in particular is
chosen in DPD to decrease linearly with increasingri j . Beyond a certain cut-off
separationrc, the weight functions and thus the forces are all zero. The weight
functions are normalized such that (62)∫

V

ω(r ) dr = V

N
, 14.

whereV is the volume of the simulation box andN is the number of particles. In
early versions of DPD, the three weight functions were taken to be equal. Espa˜nol
& Warren (101) showed that the system will sample the canonical ensemble and
obey the fluctuation-dissipation theorem [in the limitδt → 0 (102) if one chooses
γ = σ 2

2kBT and ωD(ri j )= (ωR(ri j ))2, where kB is Boltzmann’s constant]. The
instantaneous temperature of the system is obtained, as in MD,

3kBT =
〈

p2
i

mi

〉
. 15.

In a DPD simulation, the particle momenta may be updated according to the
simple discretized Euler equation:

pi (t + δt) = pi (t)+ δt
∑
j 6=i

FC
i j + δt

∑
j 6=i

FD
i j +
√
δt
∑
j 6=i

FR
i j . 16.

The
√
δt term arises from the discretization of the stochastic differential equa-

tion. The particle positions are then updated according to

r i (t + δt) = r i (t)+ pi (t + δt)
mi

δt. 17.
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However, the velocity Verlet method, which is also used in MD, has been
shown to be a preferable integration scheme (52, 103). The units in DPD are
dimensionless. The cutoff radiusrc of the particle interaction sets the length scale
of the system.

Classical Monte Carlo

The primary task for which the Monte Carlo method was developed is the calcula-
tion of thermodynamic averages (104, 105), i.e., high-dimensional configuration
space integrals. To sample preferentially the regions of configuration space with
large statistical weight, the MC method in its kinetic version numerically solves
the following master equation

Pn+1(x) = Pn(x)+
∑

x′
W(x′ →x)Pn(x′)−

∑
x

W(x→ x′)Pn(x), 18.

wherePn(x) is the probability of finding configuration x at “time” (MC step)n.
The transition probabilities from configuration x′ to configuration x,W(x′ → x),
are chosen to fulfill the detailed balance condition with the equilibrium probability
distribution

W(x′ → x)Peq(x
′) = W(x→ x′)Peq(x), 19.

which for most applications is given by the canonical distributionPeq(x) =
1
Z exp{−βH (x)} whereβ = 1

kBT and the canonical partition function is given
by Z = ∑

x exp{−βH (x)}. In this way, it is guaranteed that in the stationary
state of the Markov chain generated by the master equation, all configurations are
generated according to their equilibrium statistical weight.

For lattice models, the MC technique is the most common option to define a
(pseudo-) kinetics in configuration space (cellular automata type models are also
used for this purpose) (106), whereas for off-lattice models it provides an alter-
native to the MD method. The great advantage of the MC method is the freedom
of choice for the transition probabilities, provided detailed balance (or a suitably
relaxed condition) (104) is fulfilled. The transition probabilities can thus be opti-
mized to provide for efficient sampling of the configuration space. The flip-side
of this is the fact that only for certain classes of transition probabilities are the
generated pseudo-kinetics physically reasonable. It is known, for example, that
suitably chosen local update rules reproduce the Rouse-like dynamics of short
polymer chains (105, 107). The types of moves that are generally explored are the
same for lattice and off-lattice models. The local moves either act on intramolec-
ular degrees of freedom (1-bond rotations, 2-bond rotations and 3-bond rotations)
(108) or generate random displacements of selected atoms (32–35). A variety of
larger-scale MC moves have also been considered: the slithering snake or reptation
move (108–111), where one randomly cuts a bond from the end of a chain end
and attempts to re-attach it to the other end; configurational bias moves [(112–
115); for a review see (116)] where an entire section of a chain is cut and then
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randomly regrown; the pivot move (108, 117–119) used for single-chain simula-
tions; concerted rotation moves around several bonds in a chain (120–122); and
connectivity altering moves (123, 124), in which a chain end attaches to a monomer
on another chain, cutting off one of the two parts of the original chain. Another
class of MC methods is defined through altering the thermodynamic ensemble for
the simulation from the canonical one to, for example, a semi-grand-canonical
ensemble (125–129), which is used for blend simulations and where the iden-
tity of a chain is switched to the other species pertaining to a probability given
through a fixed chemical potential difference between the two species. Another
ensemble used for the determination of phase equilibria is the Gibbs-ensemble
(130–132). Here, for example, a polymer liquid and the coexisting vapor phase are
simulated concurrently, and exchanges between the two simulation boxes occur
according to a fixed chemical potential. A method of increasing importance is that
of extended ensemble simulations, in which the physical phase space is artificially
extended, for example, in parallel tempering simulations (133–135). Alternatively,
one simulates at different strengths of the excluded volume interaction to allow
for chain insertion into dense systems (136, 137) or to increase the chain mobility
in simulations of dense systems (138, 139). Genetic-type or population control
algorithms are often used for single-chain simulations. They involve a sample of
representative desired chain configurations that are developed according to given
rules followed by a selection process in which the most fit samples are copied
and the least fit are pruned. This approach goes back to the pioneering work of
Rosenbluth & Rosenbluth and has recently led to simulations of chain lengths
of up to several million monomers with the pruned-enriched Rosenbluth method
(140).

Lattice Boltzmann Method

Another mesoscale method suited for the efficient treatment of polymer solution
dynamics is the Lattice Boltzmann method (141–150). In its application to polymer
solution dynamics, the polymer itself is still treated on a coarse-grained molecular
level using a bead-spring lattice model, but the solvent molecules are treated on the
level of a discretized Boltzmann equation (151). In this way the hydrodynamics
of the solvent is correctly captured, and the hydrodynamic interaction between
different units on the polymer chain, which is mediated by the hydrodynamic
flow generated within the solvent through the motion of the polymer, is present
in the simulation without explicit treatment of all solvent molecules. Gonnella
et al. showed that by including thermodynamic functions derived from a chosen
free energy in a lattice Boltzmann simulation of a fluid it is possible to ensure
that the fluid relaxes to a well-defined equlilibrium corresponding to the minimum
of the input free energy (148). Other applications of this idea to macromolecular
systems include the treatment of the flow of liquid crystalline materials (152, 153).
However, the presence of the lattice can introduce spurious dynamics, and one must
take care when complex flows near boundaries are of interest.
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Time-Dependent Ginzburg-Landau/Cahn-Hilliard
Field-Theoretic Mesoscale Simulation Method

A method for simulating phenomena such as phase separation and microphase sep-
aration in polymer blends and block copolymers is the time-dependent Ginzburg-
Landau (TDGL) method. This method relates the time evolution of one or more
spatio-temporal order parameters to derivatives of a free energy that is a func-
tional of these order parameters. The method is based on the Cahn-Hilliard-Cook
nonlinear diffusion equation for a binary mixture (154–156), which begins with
a continuity equation for each componenti of the mixture that relates the spatio-
temporal concentration (or density)φ i (r, t) of that component to the mass current
j i (r, t), and expresses the conservation of mass in the system. In general, for an
n-component system, an equation of motion can be written for each component
(65):

∂φi (r , t)
∂t

= −∇ · ji (r , t). 20.

The mass current of componenti is related to the chemical potentialµj through

ji (r , t) = −
n−1∑

j

Mi j∇µ j + jT (r , t), 21.

whereMi j is the mobility of componenti due toj, and jT(r, t) is the mass current
arising from thermal noise. The chemical potentialµj is related thermodynamically
to the free energy functional F{φ i(r, t),φ j(r, t), . . .,φn−1(r, t)} byµ j = δF/δφ j and
the constraintφ i+ φ j+ · · ·+ φn= 1. For an incompressible binary polymer blend,
there results only one equation of motion:

∂φ(r , t)
∂t

= ∇ · M∇ δF [φ(r , t)]
δφ(r , t)

+ η(r , t). 22.

Hereη(r , t) is a thermal noise term with zero mean and a variance given by the
fluctuation-dissipation theorem:〈η(r , t) η(r ′, t ′)〉 = −2MkBT∇2δ(r− r ′) δ(t− t ′).
In this general form of the equation of motion, any form for the free energyF may
be used, and the mobilityM may depend on the order parameterφ. For a binary
polymer blend, one typically takes

F [φ(r )]

kBT
=
∫

dr
[

fFH[φ(r )]

kBT
+ κ(φ) |∇φ(r )|2

]
, 23.

where fFH(φ) is the Flory-Huggins (FH) free energy of mixing,

fFH(φ)

kBT
= φ

NA
lnφ + (1− φ)

NB
ln(1− φ)+ χφ(1− φ). 24.

Here χ is the enthalpic interaction parameter between the two polymer
components.



5 Jun 2002 11:48 AR AR162-16.tex AR162-16.SGM LaTeX2e(2002/01/18)P1: GJB

POLYMER SIMULATION 415

The FH model has a critical point atφc = N1/2
B /(N1/2

A +N1/2
B ) andχc = (N1/2

A +
N1/2

B )2/2NANB such that the system is miscible forχ <χc and immiscible for
χ >χc at the critical concentration. For symmetric blends, in whichNA=NB=N,
φc= 1/2 andχc= 2/N. Two limiting cases of a phase-separated blend are often
considered: (a) the weak segregation limit (WSL), in whichχN≈ 2 so that the
blend is close to the critical point and (b) the strong segregation limit (SSL) in which
χNÀ 2 so that the blend is strongly immiscible.

The square gradient term describes the energy necessary to create an interface
between homogeneous domains. In the original theory, the coefficientκ of the
square-gradient term is enthalpic, independent of the local value of the order
parameter, and given byχλ2, whereλ is the effective interaction distance between
molecules. For incompressible polymeric systems, one often adds an entropic term
to κ:

κ(φ) = 1

36

[
l 2
A

φ(r )
+ l 2

B

[1− φ(r )]

]
, 25.

where li is the Kuhn length of speciesi. The combined enthalpic and entropic
expression is consistent with the random phase approximation result for the inverse
structure factor of an incompressible blend,

S−1(q) = 1

NAφDA(q2R2
A)
+ 1

NB(1− φ)DB(q2R2
B)
− 2χ, 26.

where R2
i is the average square radius of gyration of speciesi, and the Debye

function D(x)= 2(x− 1+ e−x)/x2. In the WSL, the interfacial width is much larger
than the chain dimensions, so that q2R2 ¿ 1, and the Debye function may be
approximated by D−1(x)= 1+ x/3+ O(x2). The square gradient coefficientκ(φ)
is then obtained from the coefficient of the q2 term in the Taylor expansion of the
inverse structure factor, which is related to the free energy functional as q→ 0 by

lim
q→0

S−1(q) = 1

kBT

δ2F

δφ2
. 27.

Becauseχ is typically small, the entropic contribution toκ dominates in most
cases. For example, for the symmetric polybutadiene blend studied by Bates
and coworkers (157), a typical quench temperature of 35◦C corresponds toχ =
0.00083; the entropic part ofκ is at least two orders of magnitude larger. In practice,
it is observed that including aφ-dependentκ increases the width of the interfacial
region, but does not affect the domain growth laws.

Note that for small molecules (N = 1), the free energy of mixing may be ap-
proximated via a Taylor expansion around the critical point by the Landau form,

f (ψ)

kBT
= rψ2+ gψ4, 28.

where r= (χc−χ )/4, g= 1/12, andψ = 2φ− 1. The Ginzburg-Landau free
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energy functional is then the CH functional with the Landau form of the bulk
free energy:

FGL[ψ(r )]

kBT
=
∫

dr [rψ2+ gψ4+ κ ′ |∇ψ(r )|2], 29.

whereκ ′ =χλ2/4.
This method was first proposed by Cahn and Hilliard for metallic systems and is

used in other fields to model, e.g., the development of dendrites in metallic alloys
during solidification. Unlike in metallic systems, however, polymeric systems ex-
hibit viscoelastic and hydrodynamic behavior that can have a strong influence on
the mesoscale structures that develop. Both behaviors have been incorporated into
TDGL approaches by including additional tensorial equations of motion that cou-
ple to the equations for the primary order parameter(s) (158–162). The resulting set
of equations are necessarily complicated and can be most efficiently solved using
a parallel computing architecture and a spatial decomposition scheme because the
update of an equation at a particular grid point requires only the information from
the previous time at that grid point and at the nearest neighbor grid points. The
simplest form of the TDGL model described here may be solved by an explicit
first-order Euler numerical integration scheme, but it is more efficiently solved
by the combination implicit-explicit method developed by D. Eyre (unpublished
work).

A simplification of the “bare” TDGL method is provided by the cell dynamical
system method (163–166), in which the discretized TDGL equation is replaced
by a simpler discretized equation in which the Laplacian term is replaced by its
isotropic discretized counterpart, f(φ)=A tanhφ, and the free energy functional
corresponds in the continuum limit to

FCDS[φ(r )]

kBT
=
∫

dr
[
−A ln(coshφ)+ 1

2
φ2+ D

2
|∇φ(r )|2

]
. 30.

This model reproduces the growth kinetics (i.e., scaling function and scaling
exponents) of the TDGL model, demonstrating that such quantities are insensitive
to the precise form of the double-well potential of the bulk free energy term.

Dynamical Density Functional Theory Methods

A similar method used to model complex dynamical behavior of polymeric systems
is based on the dynamic density functional theory (DDFT). One implementation
of this approach developed by Fraaije and coworkers forms the basis for the soft-
ware package MesodynTM from Accelrys (www.accelrys.com) (66–70, 167–182).
DDFT models the behavior of polymeric fluids by combining Gaussian mean-field
statistics with a TDGL model for the time evolution of conserved order parame-
ters. However, in contrast to traditional phenomenological free-energy expansion
methods employed in the TDGL approach, the free energy is not truncated, and
instead retains the full polymer path integral numerically. At the expense of a more
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challenging computation, this allows detailed information about a specific poly-
mer system beyond simply the Flory-Hugginsχ parameter and mobilities to be
included in the simulation. In addition, viscoelasticity, which is not included in
TDGL approaches using only FH or Landau free energies, is included at the level
of the Gaussian chains. A similar DDFT approach has been developed by Doi
(71–73) and forms the basis for his new software tool SUSHI (Simulation Utilities
for Soft and Hard Interfaces), one of a suite of molecular and mesoscale model-
ing tools developed at Nagoya University for the simulation of polymer materials
(http://octa.jp).

TDGL and DDFT methods have been successfully used to simulate spinodal
decomposition in binary and ternary blends and block copolymers, both in bulk and
near surfaces. They have also been used to model the influence of filler particles
(183–191) and chemical reactions (192–196) on phase separation behavior. By
treating the polymeric system with a field description that incorporates molecular
details implicitly, rather than with an explicit atomistic description, these methods
are able to simulate phenomena on length and time scales presently inaccessible to
traditional MD methods. The DPD method discussed above, which can access the
same time and length scales, has an advantage over TDGL and DDFT methods in
that the equations to be solved are far simpler, and hydrodynamic behavior results
naturally without the need for additional fields and equations.

Field-Theoretic Polymer Simulation Method

The field theoretical models arising from the Gaussian Thread Model described
above involve complicated integrals, which may be approximated using various
techniques. For block copolymer melts, a mean-field or saddle point approximation
(self-consistent mean-field theory) is typically employed as a numerical strategy
(197). In a new approach pioneered by Fredrickson and coworkers (74, 75), direct
numerical sampling of the relevant functional integrals is achieved via various
techniques (including steepest descent methods and complex Langevin dynamics)
to obtain exact numerical results.

The field-theoretic polymer simulation (FTPS) formalism is an exact re-expres-
sion of the microscopic theory in terms of complex chemical potential fields. Em-
bedded in the expression for the energy functional is the exact solution of the
partition function of one polymer in the instantaneous field environment. This im-
plies, for example, that if the fields are inhomogeneous on a scale comparable to the
radius of gyration, the method will capture the chain stretching of a diblock copoly-
mer near the order-disorder transition. The FTPS method may prove to be superior
for generating equilibrium mesophases in a variety of polymer systems; already,
it has been successfully applied to polymer solutions, multicomponent polymer
melts, and diblock copolymers. In particular, because it is exact, it includes fluctu-
ations not included in mean-field approximations, which are important for many
processes. Note that because the dynamical trajectories generated in the FTPS
approach do not conserve momentum, the method fails to capture hydrodynamic
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behavior. Also, the FTPS method is restricted to soft repulsive potentials, such as
those used in DPD, and thus the method will not describe reptation dynamics in
dense melts, which requires entanglement constraints (74).

Multiscale Simulations

A goal of computational materials science is the rapid and accurate prediction
of new materials and new properties and features of materials. The methods de-
scribed in this review have made it possible to do that to some extent. To truly link
macroscopic or even mesoscopic phenomena to a detailed molecular description,
particularly in the absence of a quantitative, molecular-based theory, will require
the bridging of models and simulation techniques across the broad range of length
and time scales between the molecular and macroscopic worlds. This type of sim-
ulation approach is known as multiscale simulation, a topic that is now receiving
a great deal of attention.

One of the first breakthrough examples of multiscale modeling of materials is
the linking of quantum and classical molecular methods with continuum methods
to study crack propagation in silicon (199). Here tight-binding MD was carried
out near the crack tip, classical MD was employed farther away, and finite element
calculations were performed far enough from the crack that a continuum approxi-
mation was valid. By developing clever schemes to link the three methods together
both spatially and temporally, the entire hybrid simulation could be carried out with
all three techniques operating simultaneously in the appropriate areas.

Multiscale simulation poses, in some sense, greater challenges for polymer ma-
terials than for metallic and ceramic materials due to the larger range of length
and time scales that characterize polymers. Although nothing comparable to the
silicon simulations has yet been reported, work is being done in that direction by
many groups. For example, Doi has developed a suite of state-of-the-art simulation
tools that model polymers at the molecular and mesoscale method. Although each
tool performs calculations using only one method, the output from one method
can be used directly as input for another, allowing an off-line bridging of length
and time scales. To achieve what he and others refer to as “seamless zooming”—
the ability to spawn higher resolution simulations using more detailed methods
where needed—will require additional theoretical and computational advances.
Along similar lines, off-line multiscale simulations of nanofilled polymers using
coarse-grained molecular dynamics, mesoscopic TDGL, and macroscopic contin-
uum finite element techniques have been carried out (81, 82). Significant advances
in uniquely mapping atomistic models of polymers onto coarse-grained models
have been made in recent years, in some cases providing nearly exact quantita-
tive agreement between the two models for certain quantities, but these mappings,
too, are performed off-line, and the various methods are not linked within a sin-
gle simulation (17, 200). Future work in multiscale modeling and simulation of
polymers will require improved coarse-graining procedures, in particular reverse-
mapping procedures, and the linking of multiple methods to span from the quantum
mechanical domain (few atoms) to the molecular domain (many atoms) to the
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mesoscopic domain (many monomers/many chains) to the macroscopic domain
(many domains or structures) (200).

APPLICATIONS

In this section, we present examples of the application of several molecular and
mesoscale simulation methods to polymers.

Quantum Mechanical Simulations

Three applications of simulation methods to polymer material problems that take
into account quantum fluctuations or treat the electronic degrees of freedom ex-
plicitly are described here. The first one is an application of the Car-Parrinello
technique to the simulation of the Ziegler-Natta heterogeneous catalysis of poly-
olefins on a MgCl2 substrate. The unique property of the ab initio methods is the
ability to describe chemical reactions on a detailed electronic level. Boero et al.
(201) showed which of the molecular forms of the catalyst (a titanium-chloride
molecule) discussed in the literature is stable in the catalytic reaction and which
of the vicinal surfaces of the magnesium-chloride crystal carry the reaction. The
state-of-the-art application of this method produced a singular contribution to the
understanding of a chemical process of significant industrial importance.

A different approach is needed when one wants to understand the importance
of quantum fluctuations of the nuclear coordinates on the properties of polymer
crystals. Martonak et al. (202) performed comparative constant pressure classical
MC simulations and constant pressure path-integral MC simulations of alkane
crystals employing an explicit atom classical force field for polyethylene (203).
The lattice parameters of the crystalline unit cell in both simulations were within
1% of the experimentally known values. However, the fluctuations of the atoms
around their equilibrium positions and of the intramolecular degrees of freedom,
such as bond lengths, bond angles, and torsion angles, did not go to zero with
decreasing temperature in the quantum simulation as they would in a classical
simulation, but rather leveled off at their quantum value. This has an influence
on the mechanical stiffness of the crystal at low temperatures as is most clearly
seen in the behavior of the elastic constantc33 connected with the stiffness in
the chain direction (see Figure 1). The quantum fluctuations of the torsion angles
led to a softening of this elastic constant with respect to the value obtained in the
classical simulation that is observable up to temperatures of about 200 K. As for the
simulations of the molten state that are discussed below, polyethylene or alkanes
have served as the fruitfly for the simulations of polymer crystals (204, 205).

Born-Oppenheimer-based calculations of the electronic ground state energy for
a given conformation of a molecule provide a link between quantum simulations
and classical MD and MC simulations when they are combined with forcefield
parametrization techniques. For the determination of force-field parameters such
as equilibrium bond lengths and angles and torsional isomeric states, there is
experimental information available, for instance, from X-ray crystallography or
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Figure 1 Elastic constant along thez-axes for an alkane crystal for chains of length 12
and 24. The quantum fluctuations lead to a softening of the crystal at low temperatures
compared with the classical result. From (202).

gas phase spectroscopy. However, these techniques provide no information on
the barriers between isomeric states. In polymer liquids, relaxation processes are
coupled to the torsional dynamics and therefore to the rate at which these barriers
are traversed. Transition state theory tells us that these rates are exponentially
sensitive to the height of the barrier above the isomeric states.

For an accurate quantitative simulation of the dynamics of polymeric liquids
employing chemically realistic force-fields, it is therefore indispensable to have
a very accurate determination of the complete form of the torsion potential. Al-
though the use of density functional techniques to perform this task is growing
(84), the generally employed methods (206–210) are perturbative calculations
of the Moeller-Plesset type. These calculations are performed on model com-
pounds representing segments of the polymer under study, which have to be large
enough to capture correlations between intramolecular degrees of freedom, espe-
cially adjacent torsion angles. One of these compounds (cis-pentene) used for the
parametrization of a force field for 1,4–polybutadiene (210) is shown in Figure 2.
For the calculation of the potential for rotations around theα-bond adjacent to the
double bond, the molecule is first set up in an optimized geometry for the other
degrees of freedom. Then this torsion angle is set to a fixed value, and the electronic
ground state is determined allowing the other degrees of freedom to relax. Note that
in this way, the potential energy as a function of dihedral angle is calculated as a dif-
ference of two large numbers:U (φ) = E(φ)− Emin(φ). Within these calculations
the barrier heights can be determined to within an error of about 0.2 kcal/mol or
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Figure 2 Dihedral potential for rotations around the alkyl bond incis-pentene. The
recent quantum chemistry results differ significantly from the literature force-fields.
From (206).

100 K, which corresponds to an error in the energy calculations in the sub 1%
range. However, typical polymer liquid simulations are performed in the temper-
ature range of 200 to 400 K so that the barrier transition ratesW∝ exp{− 1E

kBT }
are still sensitive to this uncertainty. A direct quantitative comparison with nuclear
magnetic resonance (NMR) experiments (211) can be used for a final fine-tuning
of the potential within the quantum chemical uncertainties. Accurate force fields,
obtained through a judicious combination of experimental data and quantum chem-
ical calculations, are indispensable for a quantitatively valid modeling of polymer
materials properties using chemically realistic models (described below). There are
several standard force fields available commercially that usually are not optimized
for specific polymers and therefore, in general, cannot be expected to yield a high
level of quantitative agreement with experiment across a range of temperature,
density, and pressure.

Chemically Realistic Modeling of Structural
and Thermophysical Properties

Here we focus mainly on applications of modern advanced MC techniques to
determine thermophysical properties of polymer solutions and melts employ-
ing chemically realistic force fields. One such application is the combination of
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configurational bias moves and Gibbs-ensemble simulation to determine the liquid-
vapor coexistence curve of alkanes (212–214). The liquid-vapor coexistence curve
of alkanes is experimentally inaccessible for chain lengths greater than about C12

because the critical region of the phase diagrams for these chains lies at temper-
atures where the compounds are thermally unstable. Gibbs ensemble simulations
are especially designed to treat this problem by simulating the coexisting phases
concurrently in two different simulation boxes. By allowing for volume and par-
ticle exchanges between the two boxes at fixed temperatures, the simulated boxes
are driven toward coexistence and the binodal line can be traced. Siepmann et al.
(212) determined the phase diagram of alkanes up to C48 and showed that the MC
results were in good agreement with experimental data. To achieve this agreement,
however, they had to modify existing force fields for alkanes from the literature.
None of the literature force fields employed non-bonded interaction parameters
suited to reproduce the experimental phase diagrams. In this way they also showed
that the determination of phase diagrams is a highly sensitive means of testing the
parameters for the dispersion-type interactions (they employed the Lennard-Jones
interaction potential), which are so far not obtainable through quantum chemical
calculations. Furthermore, they were able to resolve a disagreement between two
existing sets of experimental data as to the dependence of the critical density on
chain length and showed that it actually decreases for chains longer than about 10
repeat units. These scaling type properties of the critical behavior [ρc(N), Tc(N)]
were also studied extensively by MC simulations of coarse-grained models (215,
216). Kumar & Weinhold (217) performed Gibbs ensemble simulations of a bead-
spring type model to show that the standard Flory-Huggins theory of polymer
phase behavior is not sufficient.

Another important development in the application of advanced MC methods to
polymer materials is the use of sophisticated MC moves to equilibrate atomistic
models of polymer melts. The quantitative understanding of the dynamic behav-
ior of the molten state of specific polymers is of great importance for polymer-
processing industries. Although these MC techniques are not directly suited to
study these dynamic properties, they furnish the necessary starting point for dy-
namical studies using MD techniques or dynamic MC techniques. It is notoriously
difficult in a computer simulation to equilibrate even simple coarse-grained models
of polymer melts, let alone a chemically realistic one (218). On the other hand,
starting from a well-equilibrated system for the study of relaxation behavior is
indispensable if quantitatively correct results are desired. The typical relaxation
time scales that one obtains at a low-temperature following a quench can differ by
an order of magnitude from the real behavior [see (219) for an analysis using a
coarse-grained model]. One must bear in mind that the typical quench rates em-
ployed in computer simulations are roughly 10 orders of magnitude faster than
experimental quench rates (220).

In this situation, the development of fast MC equilibration algorithms for poly-
mer melts is of great importance. An example of these techniques is the end-
bridging MC move developed by Theodorou and coworkers (123, 124), which
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has proven to be very efficient in equilibrating long-chain melts of chemically
realistic polymer models. Mavrantzas et al. (124, 221, 222) have applied the tech-
nique to linear polyethylene melts with average chain lengths up to N= 1000.
The method generates polydisperse systems, and in these works the authors used
flat chain length distributions with polydispersity indices around p= 1.09. The
acceptance rate for the end-bridging moves and therefore the efficiency of the
algorithm depends on the degree of polydispersity allowed; these works showed
that the algorithm is applicable for typical experimental polydispersities. Thus in
one simulation, information for a range of chain lengths is obtained simultane-
ously but with reduced statistical accuracy for each chain length. Coupling the
overall chain conformations to an external elongational field, represented in the
simulation by a field tensor that couples to the gyration tensor of the chain and
is treated as an additional thermodynamic variable defining a new simulation en-
semble (223), the authors determined the elongational viscosity of the melt and
the flow birefringence.

Dynamics of Chemically Realistic Models
as Studied by MD Techniques

The use of MD simulation techniques to study the (dynamic) properties of poly-
meric materials using chemically realistic models has a long and successful history
(224–226). In particular, our understanding of the conformational relaxation of
polymers has profited greatly from this approach (227–229). Recently, the devel-
opment of quantitatively accurate force fields (218–221) has led to the possibility
of a parameter-free quantitative prediction of the relaxation behavior and transport
properties of polymer melts. As already discussed, the quantum chemical deter-
mination of rotational energy barriers, which determine the relaxation behavior
to a significant degree, is accurate on the electronic energy scale but still leads to
non-negligible uncertainties on the thermal energy scale of the simulations.

In this situation it has proven highly successful to validate the quantum chem-
ically determined dihedral potentials by comparison of the simulated local rota-
tional dynamics with spin-lattice nuclear magnetic resonance (NMR) experiments
(230–234). These experiments follow the reorientational motion of the CH bonds,
which in turn are sensitive to the rotational barriers for dihedral angles adjacent
along the chain. Different local chemical environments can be resolved and thus
specific dihedral potentials can be validated. In Figure 3 we show the spin-lattice
relaxation time T1 for 12 different chemical environments in a polybutadiene melt
(230) with a microstructure of 40% 1,4-cis units, 50% 1,4-trans units, and 10%
1,2-vinyl units. Establishing this kind of excellent agreement between simulation
and experiment is proof that the employed force field is able to capture not only
the static thermophysical properties of the specific polymer but also its transport
properties. The detailed comparison between simulations and experiments per-
formed on identical materials (microstructure, average degree of polymerization,
temperature, density) yields insights into the mechanisms of molecular motion
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underlying the materials transport properties. Such models using carefully vali-
dated force fields are identical to the specific polymeric material in the range of
thermodynamic parameters where they can be studied in thermal equilibrium, and
they have been shown to be quantitatively predictive.

The good agreement between these models and the real material can be nicely
demonstrated for instance by a comparison with neutron spin echo experiments,
which analyze the chain conformational relaxation from local scales to the scale
of the radius of gyration (235, 236). In Figure 4 we show a comparison between
simulation and experiment for polyethylene (235) (a melt of n-C100 chains mod-
eled with a chemically realistic united atom model). There is a 20% disagreement
in the chain center of mass diffusion coefficient between NSE experiment and
simulation (which in turn agrees with the results of a pulsed-field gradient NMR
measurement) (237), and this has been absorbed into the time scaling, but the inter-
nal relaxation of the chain conformation is seen to be identical between experiment
and simulation on all length scales. For the above discussed polybutadiene melt,
the same level of agreement has been shown, and the high statistical accuracy
of the experimental data, together with the direct measurements from simulation,
allowed for the first experimental verification of the sub-diffusive center of mass
motion in polymer melts for times shorter than the Rouse time (238), which had

Figure 4 Comparison of the single-chain intermediate coherent dynamic structure
factor in a melt of polyethylene chains of length N= 100 between experiment and
simulation. The time axis is scaled by the chain center of mass diffusion coefficient.
From (235).
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long ago been predicted from simulations of coarse-grained models (30, 239, 240).
Questions such as the range of validity of the Rouse model description of poly-
mer melt dynamics, which for a long time had been the realm of simulations of
coarse-grained models, are by now routinely analyzed using chemically realistic
models (233, 234) allowing for close contact with experiment. A big remaining
challenge for these types of simulations is the extension of the accessible ther-
modynamic parameter range, especially the extension to longer chains and lower
temperatures.

Modeling Specific Polymers with Coarse-Grained Models

Computer simulations using coarse-grained models have been highly successful
in furthering our understanding of the universal properties of polymers. On the
other hand, the existence of a large degree of static as well as dynamic universality
suggests that one can model the universal aspects of a specific polymer material
using a coarse-grained model if the model can be tailored to reproduce the correct
non-universal coefficients for this specific polymer. This route has been pursued by
several groups over the past ten years (240–249), and the state of that research has
recently been reviewed (17). The coarse-grained models are either complex lattice
models such as the bond-fluctuation model (240, 242) or the 2nnd diamond lattice
model (243, 244), or continuum models employing ellipsoidal repeat units (245)
or standard bead-spring models (246, 247). For all these models, a suitable coarse-
graining procedure of some chemically realistic polymer model (241) has to be
applied first to determine the Hamiltonian for the simulation of the coarse-grained
model. The conceptual basis for this approach (248) can be stated as follows: Let
us denote the microscopic degrees of freedom of an atomistic model by{x} and a
set of mesoscopic degrees of freedom of this model as{m}. We can then write the
canonical partition function of the atomistic model as (for notational simplicity
we will use discrete states)

Z =
∑

x

exp{−βH (x)} =
∑

m

∑
{x}m

exp{−βH (x)} =
∑

m

exp{−βF(m)}, 31.

where we have defined a generalized free energyF(m) = −kBT ln[
∑
{x}m

exp(−βH (x)}] of the mesoscopic statem. In the simplest realization of the map-
ping of atomistic onto coarse-grained models, the generalized free energyF would
furnish an effective (temperature dependent) Hamiltonian for the simulation of the
coarse-grained model. For polymers, the mesoscopic degrees of freedom,m, are
mostly taken to be some coarse-grained bond lengths connecting points along the
backbone of the polymer chain, which are some 5–10 carbon-carbon bonds apart,
and the angles between these coarse-grained bonds. When one includes additional
information on the local mobility of the polymer into the mapping (249), even
a MC simulation of the bond-fluctuation model could be used to estimate the
glass transition temperature of bisphenol-A-polycarbonate (240). Although the
glass transition characteristics of a series of polycarbonates could be even better
described using a mapping onto a bead-spring model (200, 246, 247), the physical
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basis for the ability to capture dynamic properties in both of the mapping ap-
proaches, especially where it is influenced by equation of state behavior of the
polymer, is still poorly understood.

Modeling Generic Polymer Systems with
Coarse-Grained Models

Classical MD simulations have recently been used to study the influence of nanopar-
ticles on the structure and dynamics of a polymer melt. By adjusting the interac-
tion parameters between the particle and the surrounding polymer melt, one can
directly identify which changes in the melt properties result from the type of
interaction, and which properties change as a result of the steric hindrance in-
troduced by the nanoparticle. In one study (250, 251), a bead-spring model for
the polymers is used, in which all monomers interact via a Lennard Jones (LJ)
potential. Nearest-neighbor monomers along the same chain are bound together
via a FENE anharmonic spring potential. This simple polymer model has been
studied in detail (18–22) and is known to be a good glass-forming system owing
to the incompatibility of the preferred FENE bond distance and the LJ potential
minimum.

The nanoparticle was modeled as an icosahedron, with ideal force sites at the
vertices, at three equidistant sites along each edge, and at three symmetric sites on
the interior of each face. The facet size was chosen roughly equal to the end-to-
end distance of the surrounding polymers, in the present case roughly 10 nm. A
particle was tethered to each of the force sites by a FENE spring, which maintains
a relatively rigid structure but allows for thermalization of the nanoparticle. The
nanoparticle sites were chosen to be more massive than the monomers, and a stiffer
spring was used to minimize the oscillation of the tethered particles. Nanoparticle
sites interacted with each other via a LJ potential. To determine which melt prop-
erties are a result of the steric constraints imposed by the nanoparticle and which
properties are affected by polymer-nanoparticle attraction, two possible forms for
the interaction between nanoparticle sites and monomers were considered: (a) an
excluded volume interaction only and (b) a LJ interaction. (The excluded volume
interaction was modeled by dropping the attractiver6 term in the LJ potential.)
The strength of the monomer-nanoparticle interaction was given using the Lorentz-
Berthelot mixing rules. For each configuration studied, roughly 8500 particles were
simulated for 107–108 time steps (of the order of 1011–1012 atom steps). To accel-
erate the simulation, the rRespa multiple time-step algorithm was used (94), and
the simulation was run on parallel architectures.

The nanoparticle was found to induce changes in the local melt structure
(Figure 5). As in the case of polymers near a flat surface such as a wall, the
density profile of the monomers has a well-defined layer structure, with the magni-
tude of the effect depending on the nanoparticle/polymer interaction. The changes
in the density profile are accompanied by a change in the polymer conforma-
tion near the particle surface; the polymers become slightly elongated near the
surface, and flatten significantly. The independence of the chain structure on
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the interaction suggests that the altered shape of the polymers is primarily due
to geometric constraints of packing the chains close to the surface.

The relaxation timeτ of the intermediate scattering function,F(q, t), which mea-
sures the decay of density fluctuations in the system and is immediately accessible
to neutron scattering experiments and other techniques, can be used to quantify
the effect of the nanoparticle on dynamic properties. In studies of Starr et al. (250,
251), strongly attractive nanoparticle/polymer interactions are found to slow the
dynamics relative to the pure melt, whereas non-attractive interactions show an
enhancement of the dynamics. From an experimental standpoint, the change in
dynamics is most frequently indicated by a shift in the overall glass transition in
the system. Consistent with the observations ofτ , Tg of the attractive system is
found to increase over that of the pure melt, while the excluded volume system
exhibits a suppressedTg. The fact thatTg shifts in opposite directions for a strongly
attractive versus non-attractive nanoparticle/polymer interaction demonstrates the
importance of the surface interactions in polymer/nanoparticle systems.

The self (incoherent) partFself(q, t) of F(q, t) as a function of the monomer
distance from the particle can be used to elucidate how the nanoparticle influences
the local dynamics of the polymer chains (as shown in Figure 6). In the attractive
system, the relaxation of the layers closest to the nanoparticle is slowest, consistent
with the system dynamics being slowed by the attraction to the nanoparticle.
Conversely, for the non-attractive system, the relaxation of inner layer monomers
is significantly enhanced compared with the bulk, consistent with the observed
enhancement of the system dynamics.

Applications of DPD and Lattice Boltzmann
Techniques to Mesoscopic Phenomena

The DPD method is receiving increasing attention in the simulation of complex
fluids and soft materials such as surfactants, emulsions, colloids, diblock copoly-
mers, and polymer blends. The code is relatively simple, and it is straightforward to
modify MD code to perform DPD. Accessibility to DPD code has been made easier
by its inclusion in materials simulation software by Accelrys. Development of the
method continues to increase its applicability to a variety of important mesoscopic
phenomena in polymers for which MD and BD are inadequate given current com-
putational speeds. Applications of DPD to polymer problems include single-chain
melt dynamics (45), cross-linking of high-molecular-weight polysaccharides (48),
polymer composites (49), colloid-polymer systems (50), block copolymer mi-
crophase separation (53), confined and bulk polymers in solution (54, 55), binary
blend compatibility (56), viscoelastic flow (57), pressure-induced phase separation
in polymer-solvent systems (58), and phase behavior of polymer solutions (59).

The field of applications of the lattice Boltzmann (LB) techniques to polymer
problems is also still developing. In a recent work, Ahlrichs & D¨unweg (151)
studied the problem of a single chain in solution where the polymer chain is
represented by a bead-spring type model and the solvent is modeled not explicitly



5 Jun 2002 11:48 AR AR162-16.tex AR162-16.SGM LaTeX2e(2002/01/18)P1: GJB

POLYMER SIMULATION 429

but by a lattice Boltzmann scheme. They showed that earlier MD results on the
validity of the Zimm model for the description of polymer solution dynamics
(252) could be reproduced by this new technique. In order to quantitatively match
the results from the completely molecular simulation, however, solvent properties
such as viscosity and especially the polymer-solvent coupling as represented by
the effective monomer diffusion coefficient had to be input from earlier work.
In a sense this LB application is also an example of a coarse-graining procedure
from one level of modeling (molecular) to a coarser one (mixed molecular/field-
theoretic). This stresses that there is, of course, a loss of information on short length
and time scales in using this approach. For the larger scale properties, however, the
method proved to be a factor of about 20 more efficient at the same accuracy as the
earlier MD work. The relative efficiency of the method will have to be established
for each application separately, but it promises to be a powerful method for the
study of polymer solutions.

CONCLUSIONS

In this mini-review, we have highlighted several common methods used in simu-
lating polymer materials on molecular and mesoscopic scales. Length restrictions
prevent us from including other methods, many of which are off-shoots to those de-
scribed here, and from exhaustively referencing the many outstanding simulation
studies of polymer systems.

The field of polymer simulation is a growing one, in which advances in compu-
tational power, theory, and algorithms continue to enable the simulation of more
and more complex problems. Although some of the methods used to model poly-
mers are unique to soft and/or macromolecular systems, others are the same as
those used to model non-polymer materials. Consequently, advances in computa-
tional materials science in general will continue to facilitate the understanding of
materials and materials processing, predict properties and behavior, and predict
new materials and new materials phases.

The Annual Review of Materials Researchis online at
http://matsci.annualreviews.org
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Figure 5 Model of a nanoparticle embedded in dense polymer melt (image shown
represents only a portion of the total simulation box, which contains 400 chains of 20
monomers each in addition to the nanoparticle). From F.W. Starr and S.C. Glotzer.
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Figure 6 Relaxation of the self part of the intermediate scattering function decom-
posed into the contribution of each layer of polymer around the nanoparticle (indicated
in the insets). The surface polymers exhibit the slowest dynamics in the case of the
attractive nanoparticle (top figure), whereas they exhibit the fastest dynamics in the
case of the non-attractive nanoparticle (bottom figure). From F.W. Starr, T.B. Schrøder
& S.C. Glotzer.


